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Abstract The Message Passing Interface (MPI) is the dom-
inant programming model for high-performance computing.
Applications that use over 100,000 cores are currently running
on large HPC systems. Unfortunately, MPI usage presents
a number of correctness challenges that can result in wasted
simulation cycles and errant computations. In this article,
we describe recently developed formal and semi-formal ap-
proaches for verifying MPI applications, highlighting the scal-
ability/coverage tradeoffs taken in them. We concentrate
on MPI because of its ubiquity and because similar issues
will arise when developing verification techniques for other
performance-oriented concurrency APIs. We conclude with a
look at the inevitability of multiple concurrency models in fu-
ture parallel systems and point out why the HPC community
urgently needs increased participation from formal methods
researchers.

1 MPI and Importance of Correctness

The Message Passing Interface (MPI) Standard was orig-
inally developed around 1993 by the MPI Forum, a group
of vendors, parallel programming researchers, and computa-
tional scientists. The document is not issued by an official
standards organization, but has become a de facto standard
through near universal adoption. Development of MPI con-
tinues, with MPI-2.2 released in 2009. The standard has been
published on the web [1] and as a book, and several other
books based on it have appeared (e.g., [2, 3]). Implementa-
tions are available in open source form [4, 5], from software
vendors such as Microsoft and Intel, and from every vendor
of high-performance computing systems. MPI is widely cited;
Google scholar returned 28,400 hits for “+MPI +"Message
Passing Interface"” in September, 2010. MPI is ubiq-
uitous: it runs everywhere, from embedded systems to the
largest of supercomputers. Many MPI programs represent
dozens, if not hundreds, of person-years of development, in-
cluding their calibration for accuracy, and performance tun-
ing. MPI was designed to support highly scalable comput-
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ing; applications that use over 100,000 cores are currently
running on systems such as the IBM Blue Gene/P (Figure 1)
and Cray XT5. Scientists and engineers all over the world use
MPI in thousands of applications, such as investigations of
alternate energy sources and weather simulations. For high-
performance computing, MPI is by far the dominant program-
ming model; most (at some centers, all) applications running
on supercomputers use MPI. MPI is considered a requirement
even for Exascale systems, at least by application develop-
ers [6].

Unfortunately, the MPI debugging methods available to
these application developers are wasteful, and ultimately un-
reliable. Existing MPI testing tools seldom provide coverage
guarantees. They examine essentially equivalent execution se-
quences, thus reducing testing efficiency. These methods fare
even worse at large problem scales. Consider the costs of HPC
bugs: (i) a high-end HPC center costs hundreds of millions
to commission, and the machines become obsolete within six
years, (ii) in many of these centers, over $3 million dollars
are spent in electricity costs alone each year, and (iii) research
teams apply for computer time through competitive propos-
als, spending years planning their experiments. In addition to
these development costs, one must add the costs to society of
relying on potentially defective software to inform decisions
on issues of great importance, such as climate change.

Because the stakes are so high, formal methods can play
an important role in debugging and verifying MPI applica-
tions. In this paper, we give a survey of existing techniques,
clearly describing the pros and cons of each approach. These
methods have value far beyond MPI, addressing the general
needs of future concurrency application developers, who will
inevitably use a variety of low-level concurrency APIs.

Overview of MPI: Historically, parallel systems have used
either message passing or shared memory for communication.
Compared to other message passing systems noted for their
parsimony, MPI supports a large number of cohesively en-
gineered features essential for designing large-scale simula-
tions. MPI-2.2 [1] specifies over 300 functions. Most devel-
opers use only a few dozen of these in any given application.

MPI programs consist of one or more threads of execution
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Figure 1. The Intrepid Blue Gene/P Open Sci-
ence machine at Argonne with 163,840 cores,
half a Petaflop (peak), consuming 1.26MW

with private memories called “MPI processes” and commu-
nicate through various types of message exchanges. The two
most commonly used types are point-to-point messages (e.g.,
sends and receives) and collective operations (e.g., broadcasts
and reductions). MPI also supports nonblocking operations
that help overlap computation and communication, and persis-
tent operations that make repeated sends/receives efficient. In
addition, MPI allows processes and communication spaces to
be structured using topologies and communicators. MPI’s de-
rived datatypes further enhance the portability and efficiency
of MPI codes by enabling the user to communicate noncon-
tiguous data with a single MPI function call. MPI supports
a limited form of shared-memory communication based on
one-sided communication. A majority of MPI programs are
still written using the “two-sided” (message passing oriented)
constructs, and we shall focus on these in the rest of this paper.
Finally, MPI-IO addresses a whole series of issues pertaining
to portable access to high-performance input/output systems.

Nature of MPI Applications: MPI applications and li-
braries are written predominantly in C, C++, or Fortran. Lan-
guages that use garbage collection or managed runtimes (e.g.,
Java and C#) are rarely used in HPC. These linguistic choices
are driven by pre-existing libraries, maturation of compila-
tion technology, and the need to efficiently manage memory
allocation. Memory is one of the most precious resources
in large-scale computing systems: a common rule of thumb
is that an application cannot afford to consume more than
one byte per FLOP. Computer memory is expensive and in-
creases cluster energy consumption. It is widely believed
that computer scientists using multiple cores even in tradi-
tional shared-memory applications will have to work with low
amounts of cache coherent memory per core, and manage data
locality—something MPI programmers are used to doing. It
is also becoming clear that future uses of MPI will be in con-
junction with shared-memory libraries and notations such as
Pthreads [7], OpenMP [8], CUDA [9], and OpenCL [10], in
order to reduce message-copy proliferation and exploit future
commodity CPUs that will increasingly support shared mem-
ory concurrency.

While some MPI applications are written from scratch,

many are built on top of user libraries, typically also written
using MPI. Many such finely crafted libraries exist, includ-
ing medium-sized libraries such as ParMETIS [11], used for
parallel hypergraph partitioning, ScaLAPACK [12] for high-
performance linear algebra, and PETSc [13], for solving par-
tial differential equations.

Verification and Debugging Methods: MPI processes exe-
cute in disjoint address spaces, interacting through API func-
tions involving deterministic and non-deterministic features,
collective operations, and non-blocking communication com-
mands. Existing (shared memory concurrent program) debug-
ging techniques do not efficiently carry over to MPI, whose
operations typically match and complete out of program order
according to an MPI-specific matches-before order [14, 15].
The overall behavior of an MPI program is also heavily in-
fluenced by how specific MPI library implementations take
advantage of the latitude provided by the MPI standard.

An MPI program bug is introduced while modeling the
problem, while approximating the numerical methods, or
while coding, including whole classes of floating-point is-
sues [16]. While lower level bugs such as deadlocks and data
races are serious concerns, their detection requires specialized
techniques of the kind described here. Since many MPI pro-
grams are poorly parameterized, it is not easy to downscale
a program to a smaller instance and locate the bug. For all
these reasons, we need a variety of verification methods, each
narrowly focused on subsets of correctness issues and mak-
ing specific tradeoffs. Our main focus in this paper is formal
analysis methods for smaller scale MPI applications and semi-
formal analysis methods for the very large scale. For detecting
MPI bugs in practice, formal analysis tools must be coupled
with run-time instrumentation methods found in tools such as
Umpire [17], Marmot [18], and MUST [19]. Much more re-
search is needed in such tool integration.
Dynamic Analysis: MPI provides many nondeterministic
constructs. These free the runtime system to choose the most
efficient way to carry out an operation, but also mean that a
program can exhibit multiple behaviors when run on the same
input, posing well-known verification challenges. An example
is a communication race arising from a “wildcard” receive, an
operation that does not specify the source process of the mes-
sage to be received, leaving this decision to the runtime sys-
tem. Many subtle program defects are revealed only for a spe-
cific sequence of choices. While random testing might happen
upon one such sequence, it is hardly a reliable approach.

In contrast, dynamic verification approaches control the ex-
act choices made by the MPI runtime, and use this control to
explore methodically a carefully constructed subset of behav-
iors. For each behavior, a number of properties may be veri-
fied, including absence of deadlocks, assertion violations, in-
compatible data payloads between senders and receivers, and
MPI resource leaks. Using a formal model of the MPI se-
mantics, a dynamic verifier can conclude that if there are no
violations on the subset of executions, then there can be no
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violation on any execution. If even this reduced subset cannot
be exhaustively explored, the user can specify precise cover-
age criteria and obtain a lesser (but still quantifiable) degree
of assurance.

This approach has been realized in the shared memory
concurrency domains in tools such as VeriSoft [20], Java
Pathfinder [21], and CHESS [22]. In §2, we present two MPI-
specific dynamic verifiers, ISP and DAMPI. Such tools offer
distinct advantages: they do not require any modification to
the program source code, compiler, libraries, or the software
stack; they are language-agnostic; they can scale to relatively
large process counts by exploiting MPI semantics; and they
are fully automated.
Full-Scale Debugging: Traditional “step-by-step” debugging
techniques are untenable for traces that involve millions of
threads. In §3, we describe a new debugging approach that an-
alyzes an execution trace and partitions the threads into equiv-
alence classes based on their behavior. Experience on real,
large-scale systems shows that typically only a small number
of classes emerge, and the information provided can help a de-
veloper to isolate a defect. While this approach is not compa-
rable to the other approaches discussed here, in that the focus
is on the analysis of one trace rather than reasoning about all
executions, it clearly has an advantage in sheer scalability.
Symbolic Analysis: The approaches discussed above are only
as good as the set of inputs to which they are applied. De-
fects that are only revealed for very specific input or param-
eter values may be difficult to discover with those techniques
alone. Symbolic execution [23] is a well-known approach for
dealing with this problem, and in §4 we describe how this
approach can be successfully applied to MPI programs. The
TASS toolkit [24] uses symbolic execution and state enumera-
tion techniques to verify properties of MPI programs, not only
for all possible behaviors of the runtime system, but for all
possible inputs as well. It can even be used to establish that
two versions of a program are functionally equivalent, at least
within specified bounds. On the other hand, to implement this
approach requires sophisticated theorem proving technology
and a symbolic interpreter for all program constructs and li-
brary functions; for this reason, presently TASS supports only
C and a subset of MPI. Moreover, it generally cannot scale
beyond a relatively small number of processes, though as we
will show, defects which usually appear only in large config-
urations can often be detected in much smaller configurations
using symbolic execution.
Static Analysis: Compilers use static analyses to verify a
variety of simple safety properties of sequential programs.
These work on a formal structure that abstractly represents
some aspect of the program, such as a control flow graph
(CFG). Extending these techniques to verify concurrency
properties of MPI programs, such as deadlock-freedom, will
require new abstractions and techniques. In §5, we outline a
new analysis framework targeting this problem that introduces
the notion of a parallel CFG. This approach has the advan-
tage that the pCFG is independent of the number of processes,

Figure 2. Overview of ISP

which makes it essentially infinitely scalable. However, these
analyses are difficult to automate, so they may require user-
provided program annotations to guide the analysis.

2 Dynamic Verification of MPI

We present two dynamic analysis methods for MPI pro-
grams. The first approach, implemented by the tool ISP (
[25, 26], Figure 2) delivers a formal coverage guarantee with
respect to deadlocks and local safety assertions [14]. ISP has
been demonstrated on MPI applications of up to 15,000 lines
of code. Running on modern laptop computers, ISP can verify
such applications for up to 32 MPI processes on mostly deter-
ministic MPI programs. Several tutorials on ISP are being
given, including at major HPC venues [27, 28].

ISP’s scheduler (Figure 2) exerts centralized control over
every MPI action. This approach limits ISP scalability to at
most a few dozen MPI processes, which does not help pro-
grammers who encounter difficulties at higher ends of the
scale, at which user applications and library codes often use
different algorithms. Therefore, what if a designer has opti-
mized his/her HPC computation to work efficiently on 1,000
processors and suddenly finds an inexplicable bug? Tradi-
tional HPC debugging support is severely lacking in terms of
ensuring coverage goals. To address this difficulty, we have
built a tool called DAMPI (distributed analyzer of MPI, [29])
that can deterministically replay schedules and ensure non-
determinism coverage. DAMPI verifies MPI programs by run-
ning them on supercomputers. It scales far more than ISP.

Dynamic Verification using ISP: For programs with non-
deterministic MPI calls, simply modulating the absolute
times at which MPI calls are issued (e.g., by inserting non-
deterministic sleep durations, as done by stress-testing tools)
is ineffective [30] because most often this does not alter
the way in which racing MPI sends match with MPI non-
deterministic receives deep inside the MPI runtime. Also,
such delays unnecessarily slow down the entire testing.

The example of Figure 3 helps describe ISP’s active testing
approach in detail. In this example, if P2’s Isend can match
P1’s Irecv, we will encounter a bug. The question is: Can this
match occur? The answer is yes: first, let P0 issue its non-
blocking Isend call and P1 its non-blocking Irecv call; then al-
low the execution to cross the Barrier calls; after that, P2 can

3



P0 P1 P2

Isend(to : 1, 22); Irecv( f rom : ∗, x) Barrier;
Barrier; Barrier; Isend(to : 1, 33);

i f (x == 33)bug;

Figure 3. Bug manifests on some runtimes

issue its Isend. At this point, the MPI runtime faces a non-
deterministic choice of matching either Isend. We can obtain
this particular execution sequence only if the Barrier calls are
allowed to match before the Irecv matches. Existing MPI test-
ing tools cannot exert such fine control over MPI executions.
By interposing a scheduler (Figure 2), ISP can safely reorder,
at runtime, MPI calls that the program issues. In our present
example, ISP’s scheduler (i) intercepts all MPI calls coming
to it in program order, (ii) dynamically reorders the calls go-
ing into the MPI runtime (ISP’s scheduler sends Barriers first;
this is correct according to the MPI semantics), and (iii) at that
point discovers the non-determinism.

Once ISP determines that two matches could occur, it re-
executes (replays from the beginning) the program in Figure 3
twice: once with the Isend from P0 matching the receive, and
the second time with that from P2 matching it. To ensure
these matches occur, ISP dynamically rewrites Irecv( f rom :∗)
into Irecv( f rom : 0) and Irecv( f rom : 2) in these replays.
If we did not so determinize the Irecvs, but instead issued
Irecv( f rom :∗) into the MPI runtime, we might match an Isend
from another process. ISP discovers the maximal extent of
non-determinism through dynamic MPI call reordering and
achieves scheduling control of relevant interleavings by dy-
namic API call rewriting. While pursuing relevant interleav-
ings, ISP additionally detects the following error conditions:
(i) deadlocks, (ii) resource leaks (e.g., MPI object leaks), and
(iii) violations of C assertions placed in the code.

It is important to keep in mind that MPI programmers of-
ten use non-blocking MPI calls to enhance computation/com-
munication overlap. They use non-deterministic MPI calls in
master/worker patterns to detect which MPI process finishes
first, so that more work can be assigned to it. When these oper-
ations, together with “collective” operations such as Barriers
are all employed in one example, one can very well obtain
situations as shown in Figure 3. The safety-net provided by
tools such as ISP is therefore essential to support efficiency
oriented MPI programming.

The use of a tool such as ISP gives all the benefits of test-
ing (ability to run the final code of interest) while de-biasing
from the behavior of specific MPI libraries. Obviously, ISP
has no capability to detect infinite loops (an undecidable prob-
lem); it assumes that all iterative loops terminate. It guaran-
tees MPI communication non-determinism coverage under the
given test harness. It helps avoid exponential interleaving ex-
plosion through two means. First, it avoids redundantly exam-
ining equivalent behaviors (for example, it avoids examining
the n! different orders in which an MPI barrier call might be
invoked; a testing tool might explore this space needlessly). it
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Figure 4. Distributed MPI Analyzer

also comes with execution-space sampling options.
ISP has examined many large MPI programs of thousands

of lines of C code that make millions of MPI calls. It has
found many subtle bugs on a variety of applications [30].
We have also built the Graphical Explorer of Message pass-
ing (GEM) tool [31] that hosts the ISP verification engine.
GEM is an official component of the Parallel Tools Platform
(PTP, [32]) end-user runtime (PTP version 4.0 onwards), and
as such makes dynamic formal verification of MPI become
available in a seamlessly integrated manner within a popular
development environment.

Dynamic Verification using DAMPI: A widely used com-
plexity reduction approach is to debug a given program after
suitably downscaling it. One practical difficulty in carrying
out this approach is that many programs are poorly param-
eterized. For such programs, if a problem parameter is re-
duced, it is often unclear whether another parameter should
be reduced proportionally, logarithmically, or through some
other relationship. A more serious difficulty is that some bugs
are only manifest when a problem is run at scale. The algo-
rithms employed by applications and/or the MPI library itself
can change depending on problem scale. Also resource bugs
(e.g., buffer overflows) often show up only at scale.

While user-level dynamic verification supported by ISP re-
solves significant nondeterminism, testing at larger scales re-
quires a decentralized approach where the supercomputing
power aids verification. We have implemented this idea in
our tool framework DAMPI [29].

The key insight that allows us to design the decentralized
scheduling algorithm of DAMPI is that a nondeterministic
(ND) operation, such as MPI_Irecv(MPI_ANY_SOURCE)
or MPI_Iprobe(MPI_ANY_SOURCE), represents a point
on the timeline of the issuing process when it commits to a
match decision. It is natural to think of each such event as
starting an epoch—an interval stretching from the current ND
event up to (but not including) the next ND event. All de-
terministic receives can be assigned the same epoch as the
one in which they occur. Even though the epoch is defined
by one ND receive matching another process’s send, how can
we determine all other sends that can match it? The solution
is to pick all those sends that are not causally after the ND
receive (and subject to MPI’s non-overtaking rules). We de-
termine these sends using an MPI-specific version of Lamport
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clocks [33], which strikes a good compromise between scala-
bility and omissions.

Experimental results show that DAMPI can effectively test
realistic problems that run on more than a thousand CPUs, by
exploiting the parallelism and the memory capacity offered by
clusters. It has successfully examined all benchmarks from
the Fortran NAS Parallel Benchmark suite [34], with an in-
strumentation overhead of less than 10% compared to ordi-
nary testing (but able to provide non-determinism coverage,
which ordinary testing does not).

Our experiments also revealed one surprising
fact: none of the MPI programs in [34] that employ
MPI_Irecv(MPI_ANY_SOURCE) calls actually exhibited
non-determinism under DAMPI. This means that the pro-
grammer had somehow determinized the program (perhaps
through additional MPI call arguments). We believe that
alternatives to dynamic analysis (e.g., static analysis or code
inspection) are, as yet, incapable of yielding this insight in
practice.

3 Full-Scale Debugging

The approach described in this section targets the large-
scale systems that will emerge over the next several years.
Current estimates anticipate half a billion to four billion
threads in exascale systems. With these levels of concurrency,
we must target debugging techniques that can handle these
scales, as experience shows that bugs often are not manifest
until a program is run at the largest scale. The bugs often
depend on the input, which can be significantly different for
full-scale runs. Further, certain types of errors, such as integer
overflows, often depend directly on the number of processors.

However, most debugging techniques do not translate well
to full scale runs. The traditional paradigm of stepping
through code not only has significant performance issue with
large processor counts but is impractical with thousands of
processes or threads, let alone billions. Dynamic verification
techniques offer paradigmatic scaling but have even more per-
formance difficulties, particularly when the number of inter-
leavings depends on the process count.

Faced with the growing scaling requirements, we require
new techniques to limit the focus of our debugging efforts.
We have recently developed mechanisms to identify behav-
ioral equivalence classes. Specifically, our observation is that
when errors occur in large-scale programs, they do not exhibit
thousands or millions of different behaviors. Instead, they
exhibit a limited set of behaviors in which all processes fol-
low the same erroneous path (one behavior) or one or a few
processes follow an erroneous path, which then may lead to
changes in the behavior of a few related processes (two or
three behaviors). While the effect may trickle further out, we
rarely observe more than a half dozen behaviors, regardless of
the total number of processes used in an MPI program.

Given the limited behaviors being exhibited, we can then
focus on only debugging representative processes from each

Figure 5. STAT Process Equivalence Classes

behavioral class, rather than having to debug all processes at
once, thereby enabling the debugging of problems that were
previously not debuggable.

The Stack Trace Analysis Tool (STAT) [35] achieves this
goal by attaching to all processes in a large-scale job and gath-
ering stack traces sampled over time in a low overhead and
distributed manner. It then merges these stack traces to iden-
tify which processes are executing similar code. We consider a
variety of equivalence relations, which we often use hierarchi-
cally. For example, for any n ≥ 1, we consider two processes
as equivalent if they agree on the first n function calls issued.
Increasing n refines this equivalence relation, giving the user
control of the precision-accuracy tradeoff.

The resulting tree easily identifies different execution be-
haviors. Figure 5 shows the top levels of the tree ob-
tained from a run of the Community Climate System Model
(CCSM). This application uses five separate modules to model
land (CSM), ice, ocean (POP), and atmosphere (CAM) and to
couple the four models. In the figure, we can quickly iden-
tify that MPI processes 24-39 are executing the land model,
8-23 the ice model, 40-135 the ocean model, and 136-471 the
atmospheric model, while 0-7 are executing the coupler. If
a problem should be observed in one of the models, we can
use this information to concentrate on this subset of tasks; in
the case of a more broad error we can pick representatives
from these five classes and thereby reduce the initial debug-
ging problem to five processes. We have used the latter to
successfully debug several codes with significantly shortened
turnaround time, including an Algebraic Multigrid (AMG)
package, which is fundamental for many of our codes.

Additionally, tools like STAT have the ability to detect out-
liers, which can directly point to erroneous behavior without
the need for further debugging. For example, we used STAT
on the CCSM code introduced above when it hung on over
4096 processes. The stack trace tree showed one task execut-
ing in an abnormally deep stack and on closer examination
of the stack trace it not only showed that a mutex lock opera-
tion within the MPI implementation was called multiple times,
which created the deadlock, but also exactly where in the code
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for (i=0; i<n; i++) a[i] = read element i;
sum = 0.0;
for (i=0; i<n; i++)
if (a[i]>0.0) sum += a[i];

output sum;

(a) adder_seq: sequential version

int first = n*rank/nprocs;
int count = n*(rank+1)/nprocs - first;
for (i=0; i<count; i++) a[i]=read element first+i;
sum = 0.0;
for (i=0; i<count; i++)
if (a[i]>0.0) sum += a[i];

if (rank == 0) {
for (j=1; j<nprocs; j++) {

recv into buffer from rank j;
sum += buffer;

}
output sum;

} else { send sum to rank 0; }

(b) adder_par: parallel version

Figure 6. Programs that read an array from a
file, sum positive elements, and output result.

the respective erroneous mutex lock call occurred. This lead
to a quick fix of the MPI implementation.

Our current efforts include extensions that can provide bet-
ter identification of the behavior equivalence classes as well as
techniques to discern relationships between the classes [36].
Additional directions include using the classes to guide dy-
namic verification techniques.

4 Symbolic Analysis of MPI

The basic idea of symbolic execution is to execute the
program using symbolic expressions in place of the usual
(concrete) values held by program variables [23]. The in-
puts and initial values of the program are symbolic constants
X0,X1, . . ., so-called because they represent values that do not
change during execution. Numerical operations are replaced
by operations on symbolic expressions. For example, if pro-
gram variables u and v hold values X0 and X1, respectively,
then u+v will evaluate to the symbolic expression X0 + X1.

The situation becomes more complicated at a branch point.
Suppose the branch condition is the expression u+v>0. Since
the values are symbolic, it is not necessarily possible to say
whether the condition evaluates to true or false. Instead,
both possibilities must be explored. Symbolic execution han-
dles this by introducing a hidden boolean-valued symbolic
variable, the path condition pc, which is used to record the
choices made at branch points. This variable is initialized to
true. At a branch, a nondeterministic choice is made between
the two branches, and pc is updated accordingly. In our exam-
ple, pcwould be assigned the symbolic value of pc∧u+v > 0

if the true branch is selected; if this is the first branch encoun-
tered, this means pc will now hold the symbolic expression
X0 + X1 > 0. If instead the false branch is chosen, pc will
hold X0+X1 ≤ 0. Hence the path condition records the condi-
tion the inputs must satisfy in order for a particular path to be
followed. Model-checking techniques can then be used to ex-
plore all nondeterministic choices and verify a property holds
on all executions [37], or generate a test set. An automated
theorem prover, such as CVC3 [38], can be used to determine
if pc becomes unsatisfiable, in which case the current path
has become infeasible and can be pruned from the search.

One of the advantages of symbolic techniques is that they
map naturally to message-passing based parallel programs.
Our Toolkit for Accurate Scientific Software (TASS) [24],
based on CVC3, uses symbolic execution and state explo-
ration techniques to verify properties of such programs. The
TASS verifier takes as input the MPI/C source program and
a specified number of processes, and instantiates a symbolic
model of the program with that process count. TASS main-
tains a model of the state of the MPI implementation, which
includes the state of the message buffers. Like all other pro-
gram variables, the buffered message data is represented as
symbolic expressions. The user may also specify bounds on
input variables in order to make the model finite or sufficiently
small. An MPI-specific partial order reduction scheme re-
stricts the set of states explored, while still guaranteeing that if
a violation to one of the properties exists (within the specified
bounds), it will be found. A number of examples are included
in the TASS distribution, including cases where TASS reveals
defects in the MPI code, such as a diffusion simulation code
from the FEVS verification suite [39].

TASS can verify the standard safety properties outlined
above, but its most important feature is its ability to verify
that two programs are functionally equivalent, i.e., if given
the same input, they will always return the same output. This
is especially useful in scientific computing, where developers
often begin with a simple sequential version of an algorithm
and then gradually add optimizations and parallelism. The
production code is typically much more complex but is in-
tended to be functionally equivalent to the original. The sym-
bolic technique used to compare two programs for functional
equivalence is known as comparative symbolic execution [40].

To illustrate the approach, consider the example of Fig-
ure 6. The sequential program reads n floating-point numbers
from a file, sums the positive elements, and returns the result.
A parallel version divides the file into approximately equal-
sized blocks. Each process reads one of these blocks into a
local array and sums the positive elements in its block. On
all processes other than process 0, this partial sum is sent to
process 0. Process 0 receives these and adds them to its partial
sum, and then outputs the final result.

Ignoring round-off error, the two programs are function-
ally equivalent: given the same file, they will output the same
result. To see how this can be established in a simple case,
consider the case n = nprocs = 2. Call the elements of the
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file X0 and X1. There are then four paths through the sequen-
tial program, due to the two binary branches if a[i]>0.0.
One of these four paths, which arises when both elements
are positive, yields the path condition X0 > 0 ∧ X1 > 0
and output X0 + X1. We can now explore all possible exe-
cutions of adder_par in which the initial path condition is
X0 > 0∧X1 > 0. (There are many such executions, due to the
various ways in which the statements from the two processes
can be interleaved.) In each of these executions, the output
will be X0+X1. A similar fact can be established for the other
three paths through the sequential program. Taken together,
these facts imply the programs will produce the same result
on any input (for n = nprocs = 2).

The ability to uncover defects at small scales is a primary
advantage of symbolic approaches. Isolating and repairing a
defect that only manifests itself in tests with thousands of pro-
cesses and huge inputs is difficult. Several research projects
have focused on making traditional debuggers scale to thou-
sands of processes for just this reason. However, it would be
more practical to force the same defect to manifest itself at
smaller scales and then to isolate the defect at those scales.

A real-life example illustrates this point. In 2008, a
failure was reported in the MPICH2 MPI implementation.
The failure occurred when calling the broadcast function
MPI_Bcast using 256 processes and a message of just over
count = 3200 integers. Investigation eventually revealed
that the defect was in a function used to implement broad-
casts in specific situations (Figure 7(a)). For certain inputs,
the “size” argument (nbytes-recv_offset) to an MPI
point-to-point operation—an argument which should always
be nonnegative—could in fact be negative. For 256 processes
and integer data (type_size = 4), this fault occurs if and
only if 3201 ≤ count ≤ 3251.

The problematic function is guarded by the code shown
in Figure 7(b). This refers to three compile-time constants,
MPIR_BCAST_SHORT_MSG, MPIR_BCAST_LONG_MSG,
and MPIR_BCAST_MIN_PROCS, which are defined else-
where as 12288, 524288, and 8, respectively. Essentially, the
function is only called for “medium-sized” messages, when
the number of processes is a power of 2 and above a certain
threshold. With these settings, the smallest configuration re-
vealing the defect is 128 processes, with count = 3073.

A symbolic execution technique that checks that the “size”
arguments to MPI functions are always non-negative easily
detects the defect. If we also treat the three compile-time con-
stants as symbolic constants, the defect can be manifest at the
much smaller configuration of 8 processes and count = 1
(in which case nbytes-recv_offset = −1). Such an
approach likely would have detected this defect earlier and
with much less effort.

Arithmetic. In the adder example, we pretended that the
values manipulated by the program were the mathematical
real numbers, and that the numerical operations were the (in-
finite precision) real operations. If instead we treat the values
and the operations as finite-precision floating-point values, the

relative_rank = (rank >= root ?
rank - root : rank - root + comm_size);

nbytes = type_size * count;
scatter_size =

(nbytes + comm_size - 1)/comm_size;
mask = 0x1; i = 0;
while (mask < comm_size) {
relative_dst = relative_rank ˆ mask;
dst_tree_root = relative_dst >> i;
dst_tree_root <<= i;
recv_offset = dst_tree_root * scatter_size;
if (relative_dst < comm_size)
{ ... MPIC_Sendrecv(...,

nbytes-recv_offset, ...); ... }
mask <<= 1; i++;

}

(a) MPIR_Bcast_scatter_doubling_allgather

else { /* (nbytes >= MPIR_BCAST_SHORT_MSG)
&& (comm_size >= MPIR_BCAST_MIN_PROCS) */
if ((nbytes < MPIR_BCAST_LONG_MSG) &&
(MPIU_is_pof2(comm_size, NULL))) {

MPIR_Bcast_scatter_doubling_allgather

(b) invocation context

Figure 7. Excerpts from MPICH2 broadcast
code. The fault occurs when the highlighted
expression becomes negative.

two programs are not functionally equivalent, since floating-
point addition is not associative [16]. Which is right? The
answer is: it depends on what you are trying to verify. For
functional equivalence, it is rare that the specification and im-
plementation are expected to be “bit-level” equivalent (wit-
ness the adder example), so real-equivalence is probably more
useful for this task. TASS uses a number of techniques spe-
cialized for real arithmetic; e.g., all real-valued expressions
are put into a canonical form which is the quotient of two
polynomials, to facilitate matching of expressions. For other
tasks, such as detecting the defect in Figure 7, bit-level rea-
soning is more appropriate. Klee [41] is another symbolic ex-
ecution tool for (sequential) C programs that uses bit-precise
reasoning; there is no reason why these techniques could not
be extended to parallel MPI-based programs.

5 Static Analysis of MPI

In the sequential arena, compiler techniques have been very
successful at analyzing programs and transforming them to
improve performance. However, MPI applications are diffi-
cult to analyze because: (i) the number of MPI processes is
unknown at compile time and is unbounded; (ii) since MPI
processes are identified by numeric ranks, applications use
complex arithmetic expressions to define the processes in-
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volved in communications; (iii) the meaning of ranks depends
closely on the MPI communicators that the MPI calls use; and
(iv) MPI provides several nondeterministic primitives such as
MPI ANY SOURCE and MPI Waitsome. While some work
has explored analysis of MPI applications, none has success-
fully addressed these challenges.

Some approaches treat MPI applications as sequential
codes, which makes it possible to determine simple applica-
tion behaviors, such as the relationship between writing to a
buffer and sending it. However, they cannot represent or an-
alyze the application’s communication topology. Other ap-
proaches require knowledge of the number of processes to be
used at runtime and analyze one copy of the application for
each process. While this can capture the application’s full par-
allel structure, it is inflexible and non-scalable. In [42], static
analysis was applied to MPI activity analysis and performance
improvement.

We have developed a novel compiler-analysis framework
that extends traditional dataflow analyses to MPI applica-
tions, extracting the application’s communication topology
and matching the send and receive operations that may com-
municate at runtime [43]. The framework requires no run-
time bound on the number of processes and is formulated as
a dataflow analysis over the Cartesian product of control flow
graphs (CFGs) from all processes, which we refer to as a par-
allel CFG (pCFG). During its execution, the analysis symbol-
ically represents the execution of multiple sets of processes,
keeping track of any send and receive operations. Process sets
are represented using abstractions such as lower and upper
bounds on process ranks or predicates such as “ranks divisible
by 4”. Sends and receives are periodically matched to each
other by proving that the composition of their communication
partner rank expressions produces the identity function, which
establishes the application’s communication topology. We can
instantiate the analysis framework with a variety of “client
analyses” that leverage the communication structure informa-
tion derived by the framework to propagate their dataflow in-
formation as they do with a sequential application. These
analyses and transformations include optimizations, error de-
tection and verification, and information flow detection.

Finally, since topological information is key to a variety
of compiler transformations and optimizations, our ongoing
work is focusing on source code annotations that the develop-
ers can use to describe the application’s communication topol-
ogy and other properties. We will then leverage our analysis’
abstract representation of this information to implement novel
scalable analyses and transformations that can enable valuable
optimizations in complex applications.

6 Concluding Remarks

The main objective of this article is to highlight the fact
that formal and semi-formal methods are crucial for ensur-
ing the reliability of message-passing programs across a vast
scale of application sizes. Unfortunately, there has rarely been

a discussion of these methods in the literature. To address this
lacuna, we presented here the perspectives of academic re-
searchers as well as HPC researchers working in national lab-
oratories who are engaged in cutting edge HPC deployment.
We propose a continuum of tools based on static analysis, dy-
namic analysis, symbolic analysis, and full-scale debugging,
also complemented by more traditional error-checking tools.
Our collaborations have resulted in promising tools that have
helped specialize formal methods in ways that best address the
needs of verifying real-world MPI applications.

Unfortunately, we alone can only barely scratch the sur-
face of a vast problem area. There is a severe disconnect be-
tween “traditional computer scientists” and HPC researchers,
which perhaps explains the serious shortage of formal meth-
ods researchers interested in HPC problems. This is especially
unfortunate considering the many disruptive technologies that
are on the horizon, including the usage of hybrid concurrency
models along with MPI to program shared memory manycore
systems. There are also emerging message passing based stan-
dards for embedded multicores (e.g., MCAPI [44]) whose de-
sign and tool support can benefit from lessons learnt in the
realm of MPI.

We propose two approaches to accelerate the use of for-
mal methods in HPC. First, we must encourage researchers
to develop verification methods specifically for today’s APIs
(MPI, and perhaps later CUDA and OpenCL). While verify-
ing newer APIs might be easier, building formal support for
widely used APIs can help sway today’s HPC practitioners
into becoming formal methods believers, and eventually be-
coming promoters of formal methods. We also believe that
funding agencies must begin tempering the hoopla around per-
formance goals (e.g., “ExaFLOPs in this decade”) by also set-
ting formal correctness goals that lend the essential credence.
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